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Stability of a Towed Body

Bernard Etkin*
University of Toronto, Toronto, Ontario M3H 5T6, Canada

This paper presents a mathematical model for the ef� cient computation of the stability of bodies subject
to � uid – dynamic forces while constrained by a � exible, extensible cable. The way the cable is represented
permits the body to be heavier or lighter than air and to have a steady-state lift. The model is applied
to the case of a pendant vehicle towed by a cable attached to an aircraft, a case of considerable practical
interest. It is shown that inherent instabilities are present and that they can be eliminated by the correct
method of cable attachment. The paper emphasizes the physics of the system and the reasons for the
instabilities.

Nomenclature
a, b, b9 = dimensions, Fig. 3
d = diameter of cable
E = Young’s modulus
FB = body-� xed frame of reference
FI = inertial frame of reference, moving horizontally

with speed V0

g = gravitational acceleration
h = length of cable segment
Ix, Iy, Iz = moments of inertia, body axes
L, D = lift and drag per unit length of cable, also lift

and drag of the towed body
l = length of cable
m = mass of body
N = number of points on cable
p, q, r = angular velocity components of the body
s = curvilinear coordinate on cable
T = tension in cable
TNy = yB component of cable tension at point N
u, v, w = velocity components of cable point relative to

FI

u9, v9, w9 = perturbation velocity components in FB of the
body c.g., relative to atmosphere

uQ, vQ, wQ = FB components of velocity of point Q
V0 = steady � ight speed
W = weight of towed body
X, Y, Z = aerodynamic force per unit length of cable in

frame FI, also aerodynamic force on towed
body in frame FB

x, y, z = coordinates of a point on the cable, in frame FI

a = angle attack of the body
ac = angle, Fig. 2
g = angle, Fig. 2
d = static extension of elastic cable
dc = angle, Fig. 2
u, f, c = Euler angles of towed body
j, h, z = perturbations of x, y, z
rc = mass per unit length of cable
f = angle, Fig. 3a

Superscripts

¯ = steady-state value
9 = perturbation value
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I. Introduction

T HERE are numerous physical systems in which a body is
acted on by � uid – dynamic forces while being constrained

by a cable. Examples include kites, towed gliders, tethered
aerostats, towed sonar devices, trailing static-pressure devices,
refueling hoses, and the vehicles used to carry geophysical
instrumentation beneath an aircraft. It is the last application
that provided the motivation for this work.

As everyone who has � own a kite knows, stability can be a
problem in such systems. An inherently stable aerodynamic
body can become unstable when its propulsion, so to speak,
is provided by a cable instead of an aerodynamic thruster. Bod-
ies on which the only aerodynamic force is drag will never be
unstable. On the other hand, when the body is con� gured so
as to maintain its attitude when in motion, as, for example,
with tail � ns, then lift and side-force can be present. Couplings
can then occur between body attitude degrees of freedom and
cable degrees of freedom, which can lead to instability of small
perturbations. As pointed out by DeLaurier,1 the consequence
of such an instability may be a stable limit cycle of � nite
amplitude. There are numerous anecdotal reports of � nned
bodies experiencing unacceptably large motions, both longi-
tudinal and lateral. Because such oscillations of the towed
body are unlikely to be acceptable from an operational stand-
point, stability of small perturbations may be taken to be a
requirement in the design of such systems.

The earliest research on this phenomenon appears to be that
carried out in England during WWI by Bairstow et al.,2 and
subsequently by Glauert,3 as well as by others. Glauert used
a very simple model, a massless, dragless inextensible wire
towing an aerodynamically stable body, to demonstrate the
possibility of system instability. Later work in England (see
Ref. 4) extended the sophistication of the analysis by including
some consideration of the cable’s physical characteristics.
Etkin and Mackworth5 used an analysis similar to that
of Glauert and carried out wind-tunnel experiments with a
� nned body that veri� ed the theory. DeLaurier1 presented the
� rst modern analysis with a comprehensive model of a cable-
body system having an inextensible cable. His analysis rec-
ognized that the cable can be truly represented only by a partial
differential equation, with the attached body providing end
conditions. In all of these studies the tow point was either
stationary or had constant velocity. This constraint was re-
leased by de Matteis,4 who studied the longitudinal stability of
a system comprising a tow plane, an extensible cable, and a
towed glider. This system was shown to have possible impor-
tant instabilities involving the tow plane. The modeling of these
systems, with a realistic representation of the cable included,
inevitably leads to a complex mathematical problem, and a
variety of detailed formulations have been used. All require



198 ETKIN

Fig. 1 Coordinate systems and steady state; example body at 60
m/s.

Fig. 2 Cable element in xz plane.

machine computation to obtain solutions. The formulation
presented herein brings the problem into the domain of con-
ventional linear analysis, leading to a generalized eigenvalue
problem that is readily computed by available commercial
software.

To obtain a reliable and suf� ciently general model to cover
a range of practical cases, it is necessary to include all of the
previously mentioned properties of the cable, i.e., aerodynamic
force, inertia, and extensibility. For further generality we have
also included an approximation to internal damping. This takes
the form of linear viscous energy dissipation, which, although
not an accurate representation of real hysteretic processes, is
adequate for the present purpose. The one signi� cant approx-
imation that remains is that the cable has no bending stiffness.
This assumption is reasonable for many practical cases.

Here we begin the analysis with the exact differential equa-
tions of a � exible extensible cable, and use a � nite difference
representation of the s derivatives to generate a system of or-
dinary differential equations in t. This makes it possible to use
a compact representation of the equations in matrix form and
to solve them very conveniently. The particular form of the
equations and the representations of the aerodynamic forces
and the geometry were carefully chosen so as to make the
analysis and the � nal structure of the system as transparent
and as simple as possible. The equations describing the cable
are quite general and are indeed applicable to all of the many
situations described in the preceding text. However, for each
case it is necessary to specialize the equations describing the
towed body and the motion of the tow point to correspond to
the physical con� guration under study. In the examples com-
puted next, we have specialized to a pendant body, i.e., a non-
buoyant body with a small ratio of lift-to-weight. The tow
point is assumed to move at constant horizontal speed. We
have chosen a cylindrical body with a rounded nose and cru-
ciform � ns for the primary example. To validate the model,
we have also applied it to the limiting cases of a simple pen-
dulum, a compound pendulum, and a dangling cable with no
body attached.

The computed results show that this class of system can
have inherent instabilities over some ranges of � ight speed.
This con� rms the � nding in Refs. 2 and 5 for lateral stability
of a much simpli� ed model. We have also found, however,
that the instability can be eliminated by a suitable method of
attachment of the cable to the body.

II. Analysis
It is assumed that the system has a steady state at speed V0

in still air. In the steady state the cable lies in a vertical plane
that bisects a symmetrical body. It is the stability of this steady
state that is to be studied.

Figure 1 shows that the coordinate system used (xI, yI, zI) is
an inertial frame FI attached to the tow plane at O. It moves
to the left with the constant horizontal velocity V0; (xB, yB, zB)
is a noninertial body-� xed frame FB attached to the body with
origin at its c.g. and moving with it. The body axes are the
principal axes of the body. The cable OPN is attached to the
tow plane at O and to the body sling at PN. s is distance along
the cable measured from O. N points PN, equidistant in s in
the steady state, are chosen on the cable. The coordinates in
frame FI of point Pn on the cable are (xn, yn, zn).

It can be shown (the proof is not given here) that when the
system is symmetrical about the xz plane, as this one is, then
the most general motion (in still air) can, just as with airplanes,
be subdivided into two classes, longitudinal and lateral. In the
former, each particle of the cable and body moves in a vertical
plane (parallel to xz), so that the motion of the body consists
of surging (fore and aft), heaving (up and down), and pitching.
In the latter class, the motion of the body consists of rolling,
yawing, and sideslipping. Although the longitudinal class can
exist by itself for both large and in� nitesimal motions, the
lateral class exists independently only for small perturbations.

If the lateral motions are large, then they induce motions in
the longitudinal degrees of freedom as well.

III. Longitudinal Model
A. Cable

An element of the cable of mass dm and length ds is shown
with the relevant notation in Fig. 2. t and n are unit vectors
tangent and normal to the cable centerline, and the xI and zI

axes are horizontal and vertical, respectively. We denote the
aerodynamic and gravity force vectors on the element by A ds
and G ds, respectively, and the acceleration by a. The com-
ponents of the vectors in frame FI are

2cos g 2sin g
t = 0 , n = 0 (1)F G F G

sin g 2cos g

X 0 uÇ
A = 0 , G = 0 , a = 0 (2)F G F G F G

Z r g wÇc

The net force applied to dm by the tension acting at its two
ends is

­
(Tt ) ds (3)

­s

The equation of motion is then

­
a dm = A ds 1 G ds 1 (Tt ) ds (4)

­s
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Table 1 Cable derivatives

k1 = 1.1

X Z

u 2rV0dC̄d 2rV0dC̄l

w 1 2¯– rV d(C 2 3k sin ḡ cos ḡ)2 0 l 1
1 2 3 ¯–2 rV d[k (2 sinḡ cos ḡ 2 sin ḡ) 1 C ]2 0 1 d

g 3 2 2–2 rV dk sin ḡ cos ḡ2 0 1
1 2 2 3–2 rV dk (2 sin ḡ cos ḡ 2 sin ḡ)2 0 1

The four equations that apply at any point of the cable are then
the x and z components of Eq. (4) and two kinematic relations,
i.e.,

xÇ = u, zÇ = w (5)

­ ­
r uÇ = X 2 (T cos g), r wÇ = Z 1 r g 1 (T sin g)c c c

­s ­s
(6)

The perturbation equations are found to be

Ç Çj = u, z = w (7a)

¯dT dT 9 dḡ
r uÇ = X9 1 sin ḡ g9 2 cos ḡ 1 sin ḡ T 9c

ds ds ds

dḡ dg9¯ ¯1 T cos ḡ g9 1 T sin ḡ (7b)
ds ds

¯dT dT 9 dḡ
r wÇ = Z9 1 cos ḡ g9 1 sin ḡ 1 cos ḡ T 9c

ds ds ds

dḡ dg9¯ ¯2 T sin ḡ g9 1 T cos ḡ (7c)
ds ds

1. Aerodynamic Forces on the Cable

The lift and drag per unit length of cable are shown in Fig.
2, together with the local velocity vector of the cable, and the
angles ac, g, and dc

1 2 1 2– –L = C rV d, D = C rV d (8)l 2 d 2

d = a 1 g (9)c c

The lift and drag coef� cients are based on data of Ref. 6. (This
very old data has been used in most of the prior literature on
this topic. It would make a good thesis project for a graduate
student to make a new set of measurements.)

2 3C = 1.1 sin d cos d , C = 0.02 1 1.1 sin d (10)l c c d c

The aerodynamic forces in the xI and zI directions per unit
length of cable are

X = 2D cos a 1 L sin a , Z = 2L cos a 2 D sin ac c c c

(11)

We have that

2 2 2V = (V 1 u) 1 w (12)0

2 1a = tan [w/(V 1 u)] (13)c 0

The perturbations in the X and Z forces at point n are given
by

­X ­X ­X
X9 = u 1 w 1 g9

­u ­w ­g
(14)

­Z ­Z ­Z
Z9 = u 1 w 1 g9

­u ­w ­g

From Eqs. (8) to (13) we get the matrix of aerodynamic de-
rivatives of the cable to be as shown in Table 1. Each entry is
the partial derivative of the column head with respect to the
row variable.

2. Length Condition

It is assumed that each element of the cable is short enough
to be treated as straight and, consequently, of length hn ob-
tained from

2 2 2h = (x 2 x ) 1 (z 2 z ) (15)n n n21 n n2 1

The perturbation of Eq. (15) is

h̄ h9 = (x̄ 2 x̄ )j 2 (x̄ 2 x̄ )j 1 (z̄ 2 z̄ )zn n n n21 n n n21 n21 n n21 n

2 (z̄ 2 z̄ )z (16)n n2 1 n21

When the cable is elastic, with viscous internal damping, the
relation between the length and average tension is

1 Ç– (T 9 1 T 9 ) = c h9 1 c h9 (17)2 n n21 1 n 2 n

For a wire of cross-sectional area A and Young’s modulus E,
the constant c1 is

¯c = AE /h (18)1

The constant c2 can be related to energy dissipation. If « is the
fraction of maximum strain energy in a cable segment that is
dissipated per cycle, it can be shown that

2pvc2
« =

2 2 2c 1 v cÏ 1 2

or approximately, for low frequency, which is the present case

2c = (« /4p f )c (19)2 1

c2 can thus be chosen to provide a selected energy dissipation
at a selected frequency.

3. Geometry and the Finite Differences

We also require certain geometrical relations, as follows:

dz dx
= sin g, = 2cos g

ds ds
(20)

dz dz
= (cos ḡ)g9, = (sin ḡ)g9

ds ds
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Fig. 3 Cable tension at the body.

From Eq. (20) we can write g9 as a function of the cable
displacement

1 dj
g9 = (21)

sin ḡ ds

and in the � nite difference scheme

dj j 2 jn11 n2 1
= (22)U ¯ds 2hn

From Eq. (20) we get

2d x dg
= sin g (23)2ds ds

The perturbation of Eq. (23) is

2d j dg9 dḡ
= sin ḡ 1 cos ḡg92ds ds ds

from which we get

2dg9 1 d j dḡ
= 2 cot ḡ g9 (24)2ds sin ḡ ds ds

The � nite difference representation of the second derivative in
Eq. (24) is

2d j j 2 2j 1 jn21 n n1 1
= (25)U2 2¯ds hn

When implementing the � nite difference scheme at the end-
points of the cable, there are some expressions that require
values of quantities that are not in the set of variables, e.g.,
j2 1 in Eq. (25) for n = 0. For these instances, we use either a
constant second difference, such as

2 2d j d j
=U U2 2ds dsn n21

or a one-sided difference such as [see Eq. (22)]

dj j 2 jN N21
=U ¯ds hN

The error introduced by � nite differences diminishes with in-
creasing N, which should therefore be increased until an ac-
ceptable limit is achieved.

B. Towed Body

The perturbation model for the body is obtained from Ref.
7, Eq. (4.9, 18), by modifying it to apply to principal body
axes and by adding the effects of the cable tension TN acting
at PN. It should be noted that u9 and w9 are components of the
velocity of the c.g. relative to the stationary atmosphere. TN is
tangent to the cable at PN and its components in FB are

¯ ¯T = (T 1 T 9 )cos f, T = 2(T 1 T 9)sin f (26)x N N z N N

Figure 3 shows the offsets a and b of the attachment point
PN and that f = gN 2 u. The perturbations in the tension
components are then as in Eq. (27), and the differential equa-
tions for the body, written in terms of the perturbations of the
body state variables, are given in matrix form in Eq. (28):

g9N¯ ¯ ¯¯ ¯T 9 2T sin f T sin f cos fx N N= u9 (27)F G F G F G¯ ¯ ¯¯ ¯T 9 2T cos f T cos f sin fz N N T9N

muÇ9 u9 1 0
mwÇ 9 w9 0 1 T 9x= A 1 (28)F GF I qÇ9G F q9G F2b 2aG T 9y z

Çu9 u9 0 0

When Eq. (27) is substituted into Eq. (28), we get Eq. (29):

muÇ9 u9
g9NmwÇ9 w9

= A 1 B u9 (29)F GF I qÇ9G F q9Gy T 9NÇu9 u9

The matrices A and B are given by Eqs. (30) and (31), re-
spectively. The wÇ derivatives present in Ref. 7 have been
neglected for the wingless body

¯ ¯X X (X 2 mV sin u ) 2mg cos uu w q 0

¯ ¯Z Z (Z 1 mV cos u ) 2mg sin uu w q 0A = (30)FM M M 0 Gu w q

0 0 1 0

¯ ¯ ¯¯ ¯2T sin f T sin f cos fN N

¯ ¯ ¯¯ ¯2T cos f T cos f 2sin FN NB = (31)¯ ¯ ¯ ¯ ¯ ¯¯ ¯ ¯ ¯F (bT sin f 1 aT cos f) 2(bT sin f 1 aT cos f) 2(b cos f 2 a sin f)GN N N N

0 0 0
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C. End Conditions

At the upper end of the cable, we have

x̄ = z̄ = j = z = u = w = 0 (32)0 0 0 0 0 0

and at the match point PN, the velocity relative to atmosphere
must be the same whether calculated as a point of the cable
or as a point of the towed body. That is

V 1 u u cos u 1 w sin u0 N Q Q= (33)F G F Gw 2u sin u 1 w cos uN Q Q

After taking the small perturbation of Eq. (33) we obtain the
following match conditions:

¯ ¯ ¯ ¯u = u9 cos u 1 w9 sin u 2 q9(a sin u 1 b cos u )N

¯ ¯ ¯ ¯w = 2u9 sin u 1 w9 cos u 1 q9(b sin u 2 a cos u ) (34)N

2 V u90

D. Steady State

The steady-state values of u, x, z, T, and g are all needed
for the dynamic calculation. The � rst step in obtaining that
solution is to calculate , the steady-state pitch attitude of theū
body. Let the basic aerodynamics of the body be given by

C (a), C (a), C (a)x z m

in which Cm is with respect to the c.g. Then at any speed V0,
setting the pitching moment about the attachment point to zero
yields the following equation:

f (a) = M (a) 1 mg (a cos a 2 b sin a) 1 bX (a) 1 aZ (a) = 0
(35)

Equation (35) is solved iteratively for a = . Equilibrium ofū
the forces on the body gives

2 2¯¯ ¯ ¯ ¯ ¯T = 2X 1 mg sin u, T = T 1 TÏx N x z
(36)

2 1¯ ¯¯ ¯ ¯ ¯T = 2Z 2 mg cos u, ḡ = tan [2(T /T )] 1 uz N z x

The next step is to integrate the cable equations numerically,
beginning at PN and proceeding toward the tow point. The four
equations needed are from Eqs. (6) and (20)

d dx̄ ¯¯ ¯(T cos ḡ) = X, = 2cos g
ds ds

(37)
d dz̄¯ ¯(T sin ḡ) = 2Z 2 r g, = sin ḡc
ds ds

The values of T̄N and given by Eq. (36) are used as startingḡN

values, and the integration proceeds in a straightforward way
in 2s from l to 0 (for this calculation, the origin needs to be
moved to PN). It is advisable to compute many more points
than N on the cable in the steady state to ensure accurate values
of the variables’ derivatives at the N main points.

E. System Structure

We de� ne the following vectors:
primary variables (6N 1 2)

T Tj = [j . . . j ] , z = [z . . . z ]1 N 1 N

T Tu = [u . . . u ] , w = [w . . . w ]
(38)1 N2 1 1 N21

T Th9 = [h9 . . . h9] , T 9 = [ T 9 . . . T 9]1 N 1 N

Tb = [u9w9q9u9]

The foregoing are assembled into

Tx = [j z u w h9 T 9 b] (39)1

auxiliary variables (4N 1 2)

T Ty = [u 2 w ] , X 9 = [X 9 . . . X 9]N N 1 N

T TZ 9 = [Z 9 . . . Z 9] , g9 = [g . . . g9] (40)1 N 1 N

T

d d d
g9 = g9 . . . g91 NF Gds ds ds

which are assembled into

d
x = X 9 Z9 g9 g9 (41)2 F Gds

By virtue of Eqs. (14), (21), and (24), we can express x2 as a
function of x1

x = Q x (42)2 4 1

In terms of the preceding variables, we can rewrite the pre-
viously derived governing equations in convenient matrix
form. For example, Eq. (7a) applied at the N points Pn becomes

Ç ÇIj = Iu 1 A y, Iz = Iw 1 B y (43)1 1

When treating Eqs. (7b) and (7c) we use a � nite difference
approximation to dT 9/ds, i.e.,

dT 9 T 9 2 T 9n1 1 n2 1
= ¯ds 2h

The result of applying Eqs. (7b) and (7c) at the N 2 1 points,
P1 . . . PN2 1 is then the 2N 2 2 equations

d
r IuÇ = C X 9 1 C T 9 1 C g9 1 C g9c 1 2 3 4

ds
(44)

d
r IwÇ = D Z9 1 D T 9 1 D g9 1 D g9c 1 2 3 4

ds

Equations (17) and (16) are similarly written as

Çc Ih9 = E h9 1 E T 9 (45a)2 1 2

Ç0 IT 9 = D h9 1 D j 1 D z (45b)1 2 3

The somewhat unusual appearance of the zero on the left side
of Eq. (45b) is an arti� ce to facilitate the inclusion of Eq. (16)
in the system of differential equations and T 9 in the state vec-
tor. The alternative, which is undesirable, is to eliminate T
from the system altogether. The differential equations (29) of
the body are rewritten as

ÇF b = F b 1 F T 9 1 F g9 (46)1 2 3 4

and � nally, the match conditions [Eq. (34)] allow us to write

y = Q x (47)5 1

Equations (43 – 46) are now assembled into the single equation:

PxÇ = Q x 1 Q x 1 Q y1 1 1 2 2 3

which, by virtue of Eqs. (42) and (47), becomes

PxÇ = (Q 1 Q Q 1 Q Q )x (48)1 1 2 4 3 5 1
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Table 2 Reference periodsa

Case Formula Values Data

1. Simple pendulum 2p l /gÏ 10.99 l = 30 m

2. Mass on a spring (bounce
mode)

2p d /gÏ 1.099 d = 0.01l

3. Transverse vibrations of a
taut string 2

l
r /TÏ c

n

1.74/n rc = 0.25 kg/m
T = 30 g N

4. Longitudinal vibrations of
an elastic string 2

l
m /EÏ

n

0.012/n m = 7.9 3 103 kg/m3

E = 2 3 1011 N/m2

5. Single degree of freedom in
pitch (or yaw)

2p I /MÏ y a 20.57/V0 ——

a
Seconds.

Equation (48) is the � nal result for the longitudinal case. It is
the equation of a generalized eigenvalue problem, which is
readily solved with available software. (The generalized case
differs from the canonical case, in which P = I, in that P here
is singular and has no inverse.)

IV. Lateral Model
In the model for in� nitesimal lateral motion, all of the steady-

state displacements are zero, and the displacement and veloc-
ity of the cable are in the yI direction. The body variables are
[v9 p r f c] (Ref. 7). (The prime on v is to distinguish it from
the cable velocity.) As noted previously, the lateral motions
occur independently of the longitudinal ones only for a sym-
metric vehicle and only for in� nitesimal motions.

A. Cable

When the cable has a lateral displacement, the tangent vector
t is

T

­x ­y ­zI I I
t = (49)F G­s ­s ­s

Because ȳ = 0, then y = h and the yI component of ­/­s(tT )
is ­/­s[(­h/ds)T ]. The cable equations of motion in the yI di-
rection are then [cf. Eqs. (5) and (6)]

2¯­T ­h ­ h¯Çh = v, r vÇ = Y 9 1 1 T (50)c
­s ­s ­s

The aerodynamic force is given by

¯ ¯­Y D L
Y 9 = v = 2 1 v (51)S D­v V V tan ḡ0 0

1. Length Condition

The cable segment length hn satis� es the relation

2 2 2 2(x 2 x ) 1 ( y 2 y ) 1 (z 2 z ) = hn n2 1 n n2 1 n n2 1 n

By taking the time derivative of this equation and recalling
that x and z are constants in a lateral disturbance, we get to
� rst order

Ç( ȳ 2 ȳ )( Çh 2 Çh ) = h h (52)n n21 n n2 1 n n

But ȳ is zero, so the segment length is constant in lateral mo-
tion. It follows that the tension T is also constant in time.

2. Towed Body

The model for the body is, like the longitudinal one, derived
from that for an airplane by adding the cable forces [Ref. 7,
Eq. (4.9, 19)], with the aerodynamic and inertial coef� cients
of a bisymmetric con� guration. The equations of motion are

written for principal body axes and, because of symmetry, with
Yp, Np, Lv, Lr all equal to zero.

The matrix equation is

Y Yv r¯ ¯ ¯(V sin u) 2 V cos u g cos u 00 0S Dm m
LpvÇ9 0 0 0 0
IpÇ x

N Nv rrÇ = 0 0 0F GÇ I If z z

Çc ¯0 1 tan u 0
¯0 0 sec u 0

1
m

b9v9
p Ix

3 r 1 T (53)Ny aF Gf Iz
c

0

0

Resolving TN into the yB direction, we get

­h¯T = T 2c cos ḡ 1 f sin ḡ 2 (54)Ny N N NS U D­s N

The condition that has to be satis� ed at the attachment point
is that the yI component of cable velocity relative to atmo-
sphere is the same as that of the body. The match conditions
are then

ÇÇh = v , vÇ = vÇ9 1 V c 1 rÇa 1 pÇb9 (55)N N N 0

The foregoing equations are assembled into the system ma-
trix equation, with state vector

Tx = [h . . . h uv . . . v uv9 p r f c] (56)1 1 N 1 N

and auxiliary vector

x = [T ] (57)2 Ny

The assembly is then similar to the longitudinal case, i.e.,

PxÇ = Q x 1 Q x , x = Q x (58)1 1 1 2 2 2 3 1

2 1xÇ = P (Q 1 Q Q )x (59)1 1 2 3 1

In constructing Eq. (58), we use Eq. (50) at points 1 to (N 2
1), Eq. (55) at point N, and Eq. (53) for the body. The result
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Fig. 5 Basic case: a) periodic and b) damping of lateral modes
(inextensible cable, a = b = 0).

Fig. 4 Basic case: a) periods and b) damping of longitudinal
modes (inextensible cable, a = b = 0).

Table 3 Lateral stability
derivatives

Cy Cl Cn

b 211.8 0 36.2
p 0 2100 0
r 83.5 0 2423

is (2N 1 5) equations in (2N 1 5) unknowns. This time P is
nonsingular and the system takes on the canonical form [Eq.
(59)].

V. Computations
Eigenvalues and eigenvectors were calculated for some ex-

amples with Eqs. (48) and (59) using the EIG command of
MATLAB (Mathworks, Inc., Natick, Massachusetts). For Eq.
(59), which is the canonical case, no special comment is re-
quired. However, for Eq. (48), P and Q = (Q1 1 Q2Q4 1 Q3Q5)
have dimensions (6N 1 2), and the software returns (6N 1 2)
eigenvalues. But the number of independent variables and,
hence, the rank of the matrices, is only (4N 1 2). Thus, 2N
of the eigenvalues are spurious. These are easily recognized,
as they will be designated either by NAN (not a number) or
by an excessively large number such as 1016. When c2 = 0, the
rank is further reduced by N, and there are only (3N 1 2)
meaningful eigenvalues. For the example cases in the follow-
ing text, in which all the modes are oscillatory, the mode of
highest frequency always corresponds to the points Pn forming

a sawtooth pattern. This is of course not physically realistic,
and hence, a number of the highest-frequency modes are re-
jected as not being meaningful. The number of useful modes
at the low-frequency end of the spectrum depends on the value
of N. Because the focus of interest is the towed body and it
experiences appreciable motion only in the lowest few modes,
we found that useful results could be obtained with N as small
as 7. In the calculations made for the following � gures, and
for the validation checks, we used various N up to 30.

The programs used were validated by applying them to sev-
eral limiting cases for which exact solutions are known. One
was the simple pendulum, a point mass on a massless string
in a vacuum A second was the same with the point mass re-
placed by a � nite rigid body. The third was a classical mass-
spring system, the body oscillating vertically on the � exible
cable, and the fourth was the dangling inextensible � exible
cable with no mass attached, also in a vacuum.8 The limiting
cases were approximated by using the programs at very low
� ight speed, e.g., 0.1 m/s, and very small masses for the cable
or the body, as the case might be (the programs as written did
not tolerate zeros for speed or masses). The periods of oscil-
lation calculated by the program were close enough to the
exact solutions to provide entirely satisfactory validation.

A. Reference Frequencies

It is very useful to have a set of reference frequencies at
hand to provide a frame of reference against which to evaluate
the frequencies returned by the computation. Table 2 gives
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Fig. 6 Effect of elasticity and location of the attachment point: a) periods and b) damping of longitudinal modes (a = 0.2 m, b = 1.0 m,
d /l = 0.01). Effect of elasticity and location of the attachment point: c) periods and d) damping of lateral modes (a = 0.2 m, b = 1.0 m,
b9 = 0.18 m).

such a set, with the numerical values being those for the ex-
ample cable and body used below. In Table 2, d is the static
de� ection of the point PN under the weight of the body; T is
the tension in the cable, and m and E are, respectively, its
density and Young’s modulus (values used are for steel); and
n is the mode number.

The pendulum period stands out as the longest, except for
the pitch degree of freedom at very low speed. It should be
noted that the bounce mode corresponds to quasistatic exten-
sion of the cable, whereas item 4 corresponds to the propa-
gation of elastic waves (sound waves) along the cable. The
periods of the longitudinal waves are so short that they would
not be expected to be of any interest except for extremely long
cables. The principal effect of cable elasticity is thus expected
to be related to the second item in the table, the vertical bounce
of the body. The pitch (yaw) period goes from very large at
low speed to very small at high speed. Thus, it crosses over
some of the other periods at some speeds. This crossover turns
out to be a cause of instability.

The example cable/body system has the following charac-
teristics:

1) Attachment: the cable is attached to a fore and aft sling
fastened to the top of the body in the xz plane (Figs. 1 and 3).

2) Cable: length 30 m; diameter 5 mm; and mass 0.25 kg/m.
3) Body: (reference area for coef� cients is the body cross

section) mb = 30 kg; Ix = 0.3 kg m2; Iy, Iz = 0.8 kg m2; CD =
0.3 1 ; Cla = 12.1; Cma = 236.2; and Cmq = 2423.20.095CL

Lateral stability derivatives are as in Table 3.

B. Results for Periods and Damping

The periods and damping of the modes of interest are shown
for various cases in Figs. 4 – 6. The damping is shown as the
real part n of the eigenvalue. Thus, the modes are stable when
n is negative and unstable when positive. Only a few of the
modes are shown— in the plots of period, those with the lon-
gest period, and in the plots of damping, those with the least
damping.

Figures 4a and 4b show the longitudinal modes for the basic
case, i.e., when the cable is inextensible and attached at the
c.g. of the body, and Figs. 5a and 5b show the lateral results
for the same case. The graphs of periods show that the pitch
and yaw modes are proportional to and are approximated2 1V 0

by item 5 in Table 2. The pendulum modes at about 11 s are
also fairly approximated by item 1 in Table 2. The periods of
the pendulum and pitch/yaw modes are equal at a � ight speed
of about 2 m/s. Some of the modes of shorter period can also
be identi� ed with and approximated by ones shown in the
table. The longitudinal modes are all seen to be stable, but
there is one unstable lateral mode. This can be identi� ed with
the interaction of the yawing degree of freedom with the pen-
dulum degree of freedom at about 2 m/s, the speed at which
their periods are the same. This is the same result as was ob-
tained in Ref. 4. The physical cause is resonance. The yaw
oscillation produces a periodic side force that drives the pen-
dulum motion in resonance, with the phase relation such that
energy is fed into the pendulum degree of freedom over a � nite
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Fig. 7 Examples of shapes of cable modes (lateral) (N = 15, � ight
speed = 30 m/s, periods = 1.67 and 0.58 s).

range of forward speed. Although there is a similar crossover
of frequency in the longitudinal modes, the pitch degree of
freedom is only weakly coupled to the pendulum motion and
does not produce a comparable instability. Pitch instability can
occur with other values of the design parameters.

The addition of cable elasticity has relatively little effect on
a short cable, such as that in the present example. With a long
cable one would anticipate coupling of the vertical bounce and
pitch degrees of freedom, with the potential for instability. This
tendency is seen in Fig. 6b, which is for an elastic cable, at a
speed of about 20 m/s.

The modal characteristics are profoundly altered by moving
the attachment point of the cable off the c.g. The mode cor-
responding to item 5 of Table 2 disappears and is replaced by
a pitch (or yaw) oscillation that is only slightly affected by
� ight speed. Moving the attachment point forward, by making
a greater than zero, can eliminate the lateral instability. How-
ever, it is not practical to have a nonzero a without also having
a nonzero b, otherwise the angle would be too large (Fig.ū
3). A combination of a and b that yields both lateral and lon-
gitudinal stability with acceptable is readily found by nu-ū
merical experimentation. Figure 6 shows the results for a body
hanging on an elastic cable.

C. Mode Shapes

The motion of the body in the lateral modes consists essen-
tially of sideways swinging combined with yawing. There is
very little rolling motion. Appreciable body motion is present
only in the modes of lowest frequency. Higher-frequency
modes consist mainly of sideways swinging of the cable from
its steady-state position, the body c.g. being almost stationary.
Figure 7 shows two of the lowest lateral modes, computed with
15 cable points, corresponding to the fundamental and third
modes of a taut string, as in item 3 of Table 2. h15 is the
displacement of the attachment point. Here, the bottom of the

cable is not � xed, however, but is seen to have some motion,
resulting in the presence of one node near the bottom. In the
extreme, the mode of highest frequency has a sawtooth shape
in which alternate points are of opposite sign. Clearly this latter
shape is only crudely representative of a true sinuous shape.
It is interesting, however, that the frequencies and damping
obtained are more accurate than might be supposed from view-
ing the mode shapes.

In the longitudinal case, the motion of the body consists of
an elliptical spiral trajectory of the c.g. in the vertical plane,
combined with pitching. The cable motions are much like
those shown for the lateral case.

VI. Conclusions
A computationally ef� cient mathematical model has been

developed for the stability of � ight-dynamic systems compris-
ing two bodies joined by a � exible, elastic cable having inter-
nal damping. The model was applied to the case of a pendant
heavier-than-air rigid � nned body being towed beneath an air-
craft on a short cable at constant speed. There is a range of
speeds within which the system is unstable laterally if the cable
is attached at the c.g. of the body. There is no comparable
longitudinal instability in the example case. The lateral insta-
bility is an inherent property of bodies with � ns that have
weathercock static stability. The elasticity of the cable is not
important for short cables but might be for long � exible cables.
The lateral instability can be eliminated by attaching the cable
forward of and above the c.g. of the body. This also reduces
the potentially destabilizing effect of the elasticity of the cable.
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